FAQ: X-ray Imaging of Nautilus shells

X-rays were initially used for research in atomic physics and medical diagnostics and therapy. Their ability to reveal structures inside an object even with an opaque surface was the driving feature of scientific and technical development of X-rays. Nowadays, beside its proven medical usefulness, X-rays are used to examine technical structures and there are telescopes to map X-rays from our Galaxy and the universe. Every radiological technician who starts in its profession learns to do X-rays of common structures like flowers, animals or teddy bears.

In the digital era, X-ray images are obtained using sensors, while film was used historically. The sensors in the medical radiological field have dimensions such as 24cm x 30cm or 43cm x 43cm. The corresponding spatial resolution for these sensors is between 70µm and 140µm.  A typical high-end camera used by a professional or advanced amateur photographer might have a pixel resolution between 4 and 8 µm. Therefore, photographers might well wonder if there is any precise imaging possible with such pixel size. Let’s look at this a little more closely.

X-rays, like visible light, can be characterized by their energy or wavelength. Shorter wavelengths correspond to higher energy. The capability to penetrate an opaque structure increases with energy. If you think of a photon as a particle, smaller particles with higher energies penetrate an object more easily. An overview of this relationship is given in the table shown here:

To make this more clear, here is a series of X-Ray  images with increasing energy. The first image was obtained with 40 kV which corresponds to a wavelength of 0.031nm. Our eyes are only able to see wavelengths between 400nm (blue) and 750 nm (red). Therefore, photons with a wavelength at 40 kV cannot be seen with the naked eye. The peripheral parts of the Nautilus shell are clearly depicted. A photographer would classify the circle at the center of the shell as „blown out“. In fact, they are not blown out. The radiation is not able to resolve the structure, because the wavelength of the X-rays is too long in this case to penetrate the shell.

40kV 10mAs 0.031nm

 Let’s go to shorter wavelengths (implying higher energies). Using 50 kV or a wavelength of 0.024nm gives more structure to the central parts. The photographic impression of a „blown out“ center is reduced. However, looking at the peripheral parts of the Nautilus there is a loss of intensity and a more grayish impression. It is conceivable that this might be regarded as an overall acceptable but subtle effect.

50kV 2mAs 0.024nm